Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Drying Technology ; 40(15 p.3064-3071):3064-3071, 2022.
Article in English | ProQuest Central | ID: covidwho-2320851

ABSTRACT

As the vaccine was successfully developed, the spread of the epidemic (COVID-19) was effectively controlled. But there are still thousands of people affected COVID-19 after being vaccinated. Neutralizing activity has become a critical method for quantifying neutralizing antibody against SARS-CoV-2. However, limited to the strict conditions of cold chain transportation, the neutralizing activity test has not been widely promoted. In this study, a room-temperature-storable chemiluminescence freeze-drying mixes for SARS-CoV-2 neutralizing antibody detection was developed to decrease the cost of lyophilization step for promoting its application in third world countries. Several freeze concentrated solutions were used to protect the antigen bioactivity. The mixes can be stored at room temperature over 12 months and still exhibited great accuracy and precision. Thus, the proposed room-temperature-storable chemiluminescence freeze-drying mixes offers a cheap and stable storage method for SARS-CoV-2 neutralizing antibody detection and shows a great potential for promoting the neutralizing activity test.

2.
J Clin Lab Anal ; 35(12): e24091, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1499275

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious and concealed virus that causes pneumonia, severe acute respiratory syndrome, and even death. Although the epidemic has been controlled since the development of vaccines and quarantine measures, many people are still infected, particularly in third-world countries. Several methods have been developed for detection of SARS-CoV-2, but owing to its price and efficiency, the immune strip could be a better method for the third-world countries. METHODS: In this study, two antibodies were linked to latex microspheres, using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide, as the bridge to decrease the cost further and improve the detection performance. The specificity of the lateral flow immunoassay strip (LFIA) was tested by several common viruses and respiratory bacterial infections. Besides, the reproducibility and stability of the LFIAs were tested on the same batch of test strips. Under optimal conditions, the sensitivity of LFIA was determined by testing different dilutions of the positive specimens. RESULTS: The proposed LFIAs were highly specific, and the limit of detection was as low as 25 ng/mL for SARS-CoV-2 antigens. The clinical applicability was evaluated with 659 samples (230 positive and 429 negative samples) by using both LFIA and rRT-PCR. Youden's index (J) was used to assess the performance of these diagnostic tests. The sensitivity and specificity were 98.22% and 97.93%, respectively, and J is 0.9615. The sensitivity and specificity were 98.22% and 97.93%, respectively, and J is 0.9615. In addition, the consistency of our proposed LFIA was analyzed using Cohen's kappa coefficient (κ = 0.9620). CONCLUSION: We found disease stage, age, gender, and clinical manifestations have only a slight influence on the diagnosis. Therefore, the lateral flow immunoassay SARS-CoV-2 antigen test strip is suitable for point-of-care detection and provides a great application for SARS-CoV-2 epidemic control in the third-world countries.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , Immunoassay/methods , COVID-19 Serological Testing/instrumentation , Carbodiimides/chemistry , Humans , Immunoassay/instrumentation , Latex/chemistry , Methylamines/chemistry , Microscopy, Electron, Scanning , Microspheres , Point-of-Care Systems , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/immunology , Sensitivity and Specificity , Succinimides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL